Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis.

Identifieur interne : 000224 ( Main/Exploration ); précédent : 000223; suivant : 000225

Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis.

Auteurs : Barbara Zambelli [Italie] ; Francesco Musiani ; Stefano Benini ; Stefano Ciurli

Source :

RBID : pubmed:21542631

Descripteurs français

English descriptors

Abstract

Transition metals are both essential to enzymatic catalysis and limited in environmental availability. These two biological facts have together driven organisms to evolve mechanisms for selective metal ion sensing and utilization. Changes in metal ion concentrations are perceived by metal-dependent transcription factors and transduced into appropriate cellular responses, which regulate the machineries of competitive metal ion homeostasis and metallo-enzyme activation. The intrinsic toxicity of the majority of metal ions further creates a need for regulated intracellular trafficking, which is carried out by specific chaperones. The Ni(2+)-dependent urease enzymatic system serves as a paradigm for studying the strategies that cells use to handle an essential, yet toxic, metal ion. Although the discovery of urease as the first biological system for which nickel is essential for activity dates to 1975, the rationale for Ni(2+) selection, as well as the cascade of events involving metal-dependent gene regulation and protein-protein interactions leading to enzyme activation, have yet to be fully unraveled. The past 14 years since the Account by Hausinger and co-workers (Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res. 1997, 30, 330-337) have witnessed impressive achievements in the understanding of the biological chemistry of Ni(2+) in the urease system. In our Account, we discuss more recent advances in the comprehension of the specific role of Ni(2+) in the catalysis and the interplay between Ni(2+) and other metal ions, such as Zn(2+) and Fe(2+), in the metal-dependent enzyme activity. Our discussion focuses on work carried out in our laboratory. In particular, the structural features of the enzyme bound to inhibitors, substrate analogues, and transition state or intermediate analogues have shed light on the catalytic mechanism. Structural and functional information has been correlated to understand the Ni(2+) sensing effected by NikR, a nickel-dependent transcription factor. The urease activation process, involving insertion of Ni(2+) into the urease active site, has been in part dissected and analyzed through the investigation of the molecular properties of the accessory proteins UreD, UreF, and UreG. The intracellular trafficking of Ni(2+) has been rationalized through a deeper understanding of the structural and metal-binding properties of the metallo-chaperone UreE. All the while, a number of key general concepts have been revealed and developed. These include an understanding of (i) the overall ancillary role of Zn(2+) in nickel metabolism, (ii) the intrinsically disordered nature of the GTPase responsible for coupling the energy consumption to the carbon dioxide requirement for the urease activation process, and (iii) the role of the accessory proteins regulating this GTPase activity.

DOI: 10.1021/ar200041k
PubMed: 21542631


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis.</title>
<author>
<name sortKey="Zambelli, Barbara" sort="Zambelli, Barbara" uniqKey="Zambelli B" first="Barbara" last="Zambelli">Barbara Zambelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Bioinorganic Chemistry, University of Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Laboratory of Bioinorganic Chemistry, University of Bologna</wicri:regionArea>
<wicri:noRegion>University of Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Musiani, Francesco" sort="Musiani, Francesco" uniqKey="Musiani F" first="Francesco" last="Musiani">Francesco Musiani</name>
</author>
<author>
<name sortKey="Benini, Stefano" sort="Benini, Stefano" uniqKey="Benini S" first="Stefano" last="Benini">Stefano Benini</name>
</author>
<author>
<name sortKey="Ciurli, Stefano" sort="Ciurli, Stefano" uniqKey="Ciurli S" first="Stefano" last="Ciurli">Stefano Ciurli</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21542631</idno>
<idno type="pmid">21542631</idno>
<idno type="doi">10.1021/ar200041k</idno>
<idno type="wicri:Area/Main/Corpus">000215</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000215</idno>
<idno type="wicri:Area/Main/Curation">000215</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000215</idno>
<idno type="wicri:Area/Main/Exploration">000215</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis.</title>
<author>
<name sortKey="Zambelli, Barbara" sort="Zambelli, Barbara" uniqKey="Zambelli B" first="Barbara" last="Zambelli">Barbara Zambelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Bioinorganic Chemistry, University of Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Laboratory of Bioinorganic Chemistry, University of Bologna</wicri:regionArea>
<wicri:noRegion>University of Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Musiani, Francesco" sort="Musiani, Francesco" uniqKey="Musiani F" first="Francesco" last="Musiani">Francesco Musiani</name>
</author>
<author>
<name sortKey="Benini, Stefano" sort="Benini, Stefano" uniqKey="Benini S" first="Stefano" last="Benini">Stefano Benini</name>
</author>
<author>
<name sortKey="Ciurli, Stefano" sort="Ciurli, Stefano" uniqKey="Ciurli S" first="Stefano" last="Ciurli">Stefano Ciurli</name>
</author>
</analytic>
<series>
<title level="j">Accounts of chemical research</title>
<idno type="eISSN">1520-4898</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacillus (enzymology)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Biocatalysis (MeSH)</term>
<term>Canavalia (enzymology)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Enterobacter aerogenes (enzymology)</term>
<term>GTP Phosphohydrolases (metabolism)</term>
<term>Helicobacter pylori (enzymology)</term>
<term>Ions (chemistry)</term>
<term>Nickel (chemistry)</term>
<term>Phosphate-Binding Proteins (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Urease (chemistry)</term>
<term>Urease (genetics)</term>
<term>Urease (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bacillus (enzymologie)</term>
<term>Biocatalyse (MeSH)</term>
<term>Canavalia (enzymologie)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Enterobacter aerogenes (enzymologie)</term>
<term>Helicobacter pylori (enzymologie)</term>
<term>Ions (composition chimique)</term>
<term>Nickel (composition chimique)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines de liaison aux phosphates (MeSH)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Urease (composition chimique)</term>
<term>Urease (génétique)</term>
<term>Urease (métabolisme)</term>
<term>dGTPases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
<term>Ions</term>
<term>Nickel</term>
<term>Urease</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ions</term>
<term>Nickel</term>
<term>Protéines bactériennes</term>
<term>Protéines de transport</term>
<term>Urease</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bacillus</term>
<term>Canavalia</term>
<term>Enterobacter aerogenes</term>
<term>Helicobacter pylori</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacillus</term>
<term>Canavalia</term>
<term>Enterobacter aerogenes</term>
<term>Helicobacter pylori</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
<term>Urease</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines bactériennes</term>
<term>Protéines de transport</term>
<term>Urease</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
<term>GTP Phosphohydrolases</term>
<term>Urease</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines bactériennes</term>
<term>Protéines de transport</term>
<term>Urease</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Biocatalysis</term>
<term>Catalytic Domain</term>
<term>Phosphate-Binding Proteins</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biocatalyse</term>
<term>Domaine catalytique</term>
<term>Protéines de liaison aux phosphates</term>
<term>Sites de fixation</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transition metals are both essential to enzymatic catalysis and limited in environmental availability. These two biological facts have together driven organisms to evolve mechanisms for selective metal ion sensing and utilization. Changes in metal ion concentrations are perceived by metal-dependent transcription factors and transduced into appropriate cellular responses, which regulate the machineries of competitive metal ion homeostasis and metallo-enzyme activation. The intrinsic toxicity of the majority of metal ions further creates a need for regulated intracellular trafficking, which is carried out by specific chaperones. The Ni(2+)-dependent urease enzymatic system serves as a paradigm for studying the strategies that cells use to handle an essential, yet toxic, metal ion. Although the discovery of urease as the first biological system for which nickel is essential for activity dates to 1975, the rationale for Ni(2+) selection, as well as the cascade of events involving metal-dependent gene regulation and protein-protein interactions leading to enzyme activation, have yet to be fully unraveled. The past 14 years since the Account by Hausinger and co-workers (Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res. 1997, 30, 330-337) have witnessed impressive achievements in the understanding of the biological chemistry of Ni(2+) in the urease system. In our Account, we discuss more recent advances in the comprehension of the specific role of Ni(2+) in the catalysis and the interplay between Ni(2+) and other metal ions, such as Zn(2+) and Fe(2+), in the metal-dependent enzyme activity. Our discussion focuses on work carried out in our laboratory. In particular, the structural features of the enzyme bound to inhibitors, substrate analogues, and transition state or intermediate analogues have shed light on the catalytic mechanism. Structural and functional information has been correlated to understand the Ni(2+) sensing effected by NikR, a nickel-dependent transcription factor. The urease activation process, involving insertion of Ni(2+) into the urease active site, has been in part dissected and analyzed through the investigation of the molecular properties of the accessory proteins UreD, UreF, and UreG. The intracellular trafficking of Ni(2+) has been rationalized through a deeper understanding of the structural and metal-binding properties of the metallo-chaperone UreE. All the while, a number of key general concepts have been revealed and developed. These include an understanding of (i) the overall ancillary role of Zn(2+) in nickel metabolism, (ii) the intrinsically disordered nature of the GTPase responsible for coupling the energy consumption to the carbon dioxide requirement for the urease activation process, and (iii) the role of the accessory proteins regulating this GTPase activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21542631</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4898</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Accounts of chemical research</Title>
<ISOAbbreviation>Acc Chem Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis.</ArticleTitle>
<Pagination>
<MedlinePgn>520-30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ar200041k</ELocationID>
<Abstract>
<AbstractText>Transition metals are both essential to enzymatic catalysis and limited in environmental availability. These two biological facts have together driven organisms to evolve mechanisms for selective metal ion sensing and utilization. Changes in metal ion concentrations are perceived by metal-dependent transcription factors and transduced into appropriate cellular responses, which regulate the machineries of competitive metal ion homeostasis and metallo-enzyme activation. The intrinsic toxicity of the majority of metal ions further creates a need for regulated intracellular trafficking, which is carried out by specific chaperones. The Ni(2+)-dependent urease enzymatic system serves as a paradigm for studying the strategies that cells use to handle an essential, yet toxic, metal ion. Although the discovery of urease as the first biological system for which nickel is essential for activity dates to 1975, the rationale for Ni(2+) selection, as well as the cascade of events involving metal-dependent gene regulation and protein-protein interactions leading to enzyme activation, have yet to be fully unraveled. The past 14 years since the Account by Hausinger and co-workers (Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res. 1997, 30, 330-337) have witnessed impressive achievements in the understanding of the biological chemistry of Ni(2+) in the urease system. In our Account, we discuss more recent advances in the comprehension of the specific role of Ni(2+) in the catalysis and the interplay between Ni(2+) and other metal ions, such as Zn(2+) and Fe(2+), in the metal-dependent enzyme activity. Our discussion focuses on work carried out in our laboratory. In particular, the structural features of the enzyme bound to inhibitors, substrate analogues, and transition state or intermediate analogues have shed light on the catalytic mechanism. Structural and functional information has been correlated to understand the Ni(2+) sensing effected by NikR, a nickel-dependent transcription factor. The urease activation process, involving insertion of Ni(2+) into the urease active site, has been in part dissected and analyzed through the investigation of the molecular properties of the accessory proteins UreD, UreF, and UreG. The intracellular trafficking of Ni(2+) has been rationalized through a deeper understanding of the structural and metal-binding properties of the metallo-chaperone UreE. All the while, a number of key general concepts have been revealed and developed. These include an understanding of (i) the overall ancillary role of Zn(2+) in nickel metabolism, (ii) the intrinsically disordered nature of the GTPase responsible for coupling the energy consumption to the carbon dioxide requirement for the urease activation process, and (iii) the role of the accessory proteins regulating this GTPase activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zambelli</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Bioinorganic Chemistry, University of Bologna, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Musiani</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Benini</LastName>
<ForeName>Stefano</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ciurli</LastName>
<ForeName>Stefano</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acc Chem Res</MedlineTA>
<NlmUniqueID>0157313</NlmUniqueID>
<ISSNLinking>0001-4842</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007477">Ions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028044">Phosphate-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C086767">UreD protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C090404">UreE protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C101639">UreF protein, bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C082270">ureG protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7OV03QG267</RegistryNumber>
<NameOfSubstance UI="D009532">Nickel</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.5</RegistryNumber>
<NameOfSubstance UI="D014510">Urease</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D020558">GTP Phosphohydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001407" MajorTopicYN="N">Bacillus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032449" MajorTopicYN="N">Canavalia</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021902" MajorTopicYN="N">Enterobacter aerogenes</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020558" MajorTopicYN="N">GTP Phosphohydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016480" MajorTopicYN="N">Helicobacter pylori</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007477" MajorTopicYN="N">Ions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009532" MajorTopicYN="N">Nickel</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028044" MajorTopicYN="N">Phosphate-Binding Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014510" MajorTopicYN="N">Urease</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21542631</ArticleId>
<ArticleId IdType="doi">10.1021/ar200041k</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Benini, Stefano" sort="Benini, Stefano" uniqKey="Benini S" first="Stefano" last="Benini">Stefano Benini</name>
<name sortKey="Ciurli, Stefano" sort="Ciurli, Stefano" uniqKey="Ciurli S" first="Stefano" last="Ciurli">Stefano Ciurli</name>
<name sortKey="Musiani, Francesco" sort="Musiani, Francesco" uniqKey="Musiani F" first="Francesco" last="Musiani">Francesco Musiani</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Zambelli, Barbara" sort="Zambelli, Barbara" uniqKey="Zambelli B" first="Barbara" last="Zambelli">Barbara Zambelli</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000224 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000224 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21542631
   |texte=   Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21542631" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020